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Solutions for inviscid rotating flow over a right circular cylinder of finite height are 
studied, and comparisons are made to quasi-geostrophic solutions. To study the 
combined effects of finite topography and the variation of the Coriolis parameter with 
latitude a steady inviscid model is used. The analytical solution consists of one part 
which is similar to the quasi-geostrophic solution that is driven by the potential 
vorticity anomaly over the topography, and another, similar to the solution of 
potential flow around a cylinder, that is driven by the matching conditions on the edge 
of the topography. When the characteristic Rossby wave speed is much larger than the 
background flow velocity, the transport over the topography is enhanced as the 
streamlines follow lines of constant background potential vorticity. For eastward flow, 
the Rossby wave drag can be very much larger than that predicted by quasi- 
geostrophic theory. The combined effects of finite height topography and time- 
dependence are studied in the inviscid initial value problem on thef-plane using the 
method of contour dynamics. The method is modified to handle finite topography. 
When the topography takes up most of the layer depth, a stable oscillation exists with 
all of the fluid which originates over the topography rotating around the topography. 
When the Rossby number is order one, a steady trapped vortex solution similar to the 
one described by Johnson (1978) may be reached. 

1. Introduction 
Taylor (1917) discovered that a homogeneous and rapidly rotating fluid has flow 

nearly independent of the coordinate parallel to the axis of rotation. He observed in the 
laboratory that, because of this effect, flow tended to go around instead of over a 
topographic feature, leaving an undisturbed column over the topography (Taylor 
1923). This phenomenon was dubbed a Taylor column by Hide (1961). Most modelling 
efforts have concentrated on studying flow which has a time-scale small compared to 
the rotation period, and topography which takes up a small fraction of the total layer 
depth so that the quasi-geostrophic approximation can be employed. This ap- 
proximation is amenable to the use of analytical methods. Under the quasi-geostrophic 
approximation, the effects of nonlinearities without the influence of friction have been 
studied extensively, including both the @-effect and stratification (Hupport 1975; 
Janowitz 1975; McCartney 1975; Johnson 1977, 1979). In these solutions, the flow is 
found by assuming that the potential vorticity-stream function relationship q($) is 
determined from upstream conditions. However, once streamlines close, this 
relationship is no longer uniquely determined because some fluid within closed 
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streamlines does not necessarily originate upstream. There have been several attempts 
to close the problem sensibly. The approach followed in the studies mentioned above 
was to allow the upstream q($) to hold within closed streamlines. 

Another consistent inviscid solution allows the fluid to be stagnant within closed 
streamlines (@ = constant). Ingersoll (1969) showed that this solution is the same as 
including the effect of bottom drag in the limit of vanishing viscosity. Johnson (1983) 
showed that this same solution is also consistent with requiring that the maximum 
amount of fluid be retained over the topography in the initial value problem (he termed 
these solutions maximum retention solutions). Johnson (1978) found an additional 
steady solution by using a variational principle to describe steady motions at finite 
Rossby number over obstacles of finite height. In this solution, the fluid which 
originated over the topography in the initial value problem is moved off as a trapped 
vortex located to the right (looking downstream) of the topography. 

This problem has also been considered in the laboratory. McCartney (1975) 
simulated in the laboratory barotropic flow over topography in the /?-plane. He 
demonstrated that lee Rossby waves are generated downstream of the topography as 
predicted by his theory. Boyer, Davies & Holland (1984) revisted this problem in the 
laboratory and numerically. They again observed the generation of damped lee Rossby 
waves. Friction is important in the laboratory and was also included in their numerical 
solutions of the steady problem. 

Steady solutions give useful insight into important dynamical processes. However, 
it is unclear under what circumstances the various steady solutions described above 
would be obtained, and there are an infinite number of additional steady solutions to 
the inviscid problem when closed streamlines occur. Huppert & Bryan (1976) solved 
the initial value problem for flow over topography in a periodic domain using a 
primitive equation model with continuous stratification on the $plane. Although the 
integration time was short so the steady state was not reached, they suggested that two 
different flow regimes are possible, one in which thq fluid which originated over the 
topography was trapped there, and one in which it eqpped downstream. James (1980) 
realized that much of the dynamics that Huppert & Bryan (1976) found could be 
explained in a much simpler barotropic quasi-geostrophic context. He found that when 
some fluid was trapped over the topography, a patch of positive vorticity spirals onto 
the hill, while successive pieces of it broke away and then, coalesced back into the main 
patch of positive vorticity. Bannon (1980) solved the initial value problem for flow on 
the /?-plane over finite Gaussian topography to find the steady solution, but included 
frictional effects and found solutions for only a limited range of the parameters. Verron 
& Le Provost (1985) studied the problem on the /?-plane, where Rossby waves were 
generated downstream of the topography for eastward flow. These solutions were 
limited because the model was confined to a channel in y (the north-south direction), 
and not run to steady state. All of these modelling studies were done using finite 
difference algorithms and thus included frictional effects. Kozlov (1983) studied the 
inviscid quasi-geostrophic problem for cylindrical topography using the method of 
contour dynamics and found similar behaviour to that described above. 

In order to extend the above work, we consider flow over finite topography in a 
simplified geometry, barotropic flow with a rigid lid over a right circular cylinder. 
Throughout, we discuss the validity of the quasi-geostrophic solution. In $2, we 
explore combining the /?-effect with finite topography. Because of the simple geometry 
a systematic exploration of the parameter space of the obstacle height, the strength of 
the flow, and the horizontal scale of the topography can be made using the analytic 
solution. The drag, the lift, and the transport over the topography are discussed. In $3, 
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the initial value problem is discussed for flow on thef-plane using contour dynamics. 
A modified contour dynamics method is developed and the relationship to steady-state 
solutions is discussed. 

2. Steady solutions on the ,%plane 
2.1. Model formulation 

For inviscid flow in shallow water with a rigid lid on the P-plane, the momentum 
equation is 

du/dt + cf, +By) (2 x u) = VP, 
and the continuity equation is 

V - h u  = 0,  

where d/dt = a/at + u.V.  

Here, u is the horizontal velocity, h is the depth of the fluid, P is the pressure,f, is the 
Coriolis parameter, and P the latitudinal derivative of the Coriolis parameter. The 
coordinate system is z positive upward from the bottom, x is east, y is north and V is 
the horizontal gradient operator (as, a,). As long as we are considering solutions which 
exist for times short compared to the frictional timescale (for instance the spindown 
time), the fluid will be considered to be completely inviscid. The shallow water model 
is valid as long as the vertical variations of the horizontal velocity can be ignored. This 
is true as long as the aspect ratio of the fluid is small (that is the ratio of the layer depth 
to the horizontal lengthscale is small). Bannon (1980) gives a thorough discussion of 
the validity of the shallow water model in this context. For the beta-plane 
approximation to be valid, @/f, where L is the horizontal lengthscale, should be at 
most order one. 

Potential vorticity is conserved following fluid parcels : 

where 

dq/dt = 0, 

4 = (0% - uy +f + PY)/h* 
A transport stream function can be defined by 

hu = -kU, 
and hv = $, 
where u and u are the zonal and meridional components of the velocity. 

In steady state the Bernoulli function, B, is conserved on streamlines, where 

B = ;u2+:v2+ P. (4) 

Both B and q can be written as functions of + in steady state. The functional 
relationships can be found from the upstream conditions. Assuming that there is a 
uniform zonal flow of size U upstream of the obstacle, 

@ = - UyH, 

where H is the constant depth of the fluid far away from the bump. Therefore, 

describes the potential vorticity as long as the fluid parcels have originated upstream. 
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y are scaled by L, then using (3) and ( 5 )  the non-dimensional $ is governed by 
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If $ is scaled by I U I H L  where L is the characteristic radius of the bump, and x and 

There are three non-dimensional parameters in the equation : h, the non-dimensional 
height of the topography scaled by the total depth of the fluid; b, (defined by /3L2/lU I) 
the ratio of the Rossby wave speed to the background flow velocity; and the Rossby 
number e = I U I/f, L. In these equations V is either 1 or - 1 depending on the direction 
of the flow. 

If h is radially symmetric, then the solution for ?,b can be divided into an odd part 
in y($J and an even part in y($.,). The even part is proportional to l /e  and is forced 
by the first term on the right-hand side of (6), while the odd part is independent of B 

and forced by the second term on the right-hand side of (6). For westward andf-plane 
flow t+k is even in x. For an isolated obstacle, the background flow remains undisturbed, 

@+-VY 
for westward andf-plane flow. However, because of the existence of Rossby waves, the 
far-field boundary conditions introduce upstream-downstream asymmetry for east- 
ward flow: 

This boundary condition comes from allowing no upstream energy propagation by 
Rossby waves. 

In the quasi-geostrophic model, the (q,?,b)-relationship is given by (5) ,  but ( 6 )  
becomes 

r@+y)+O, < e < in. (7) 

This simpler problem was solved by McCartney (1975) for flow over a right circular 
cylinder. The matching conditions are that ?,b and ?,bT are continuous across the 
boundary of the topography. The solution can be written as 

$==VY+$,  
where $ is independent of U. The only antisymmetric part is - Vy. The pressure is 
equal to $ which is continuous at r = 1. The solution has no horizontal divergence. 

For simplicity, we consider flow over a right circular cylinder. The topography is 
given by 

To solve for the stream function, two matching conditions are needed at r = 1 .  First, 
by integrating the continuity equation ( 1 )  across r = 1, it can be seen that the mass 
transport, qk, must be continuous. Second, we require the tangential velocity, $Jh,  to 
be continuous as in Johnson (1978). This allows the vorticity to be finite at r = 1. It 
should be noted that this condition requires that the pressure be discontinuous at 
r = 1. This is consistent with the conservation of B and the speeding up of the flow 
above the topography. In the Appendix we consider the solution for flow over linearly 
changing topography and show that in the limit of a finite step, the matching 
conditions reduce to those that we choose here. 
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The functional relationship between B and I,? can be found from the upstream 
boundary condition, which gives 

B($) = $-+V€bI,?'. (8) 
The first term is the geostrophic pressure, the only contribution in quasi-geostrophy. 
The second term results from the inclusion of /i' in the finite-depth model and, being 
proportional to E ,  vanishes in the quasi-geostrophic limit. Using (4) and (8), the 
pressure is then 

6 
P = I,?-;I,?"E/i'-@(I,?:+I,?;). (9) 

To analyse the solutions to (6), several quantities of physical interest are calculated, 
and the results for these calculations are compared to the results found using the quasi- 
geostrophic approximation. The magnitude of the circulation r induced over the 
topography is given by 

r = I,?Jl, O)d@. 'f 
Since only the symmetric part of the solution contributes to this integral, T is 
proportional to 1/c as Bannon (1980) pointed out. This result is the same for quasi- 
geostrophic flow. The amount of fluid that goes over the topography relative to the 
undisturbed flow upstream of the topography is the blocking efficiency. 

defined by Bannon (1980). Here, 2Vy is the transport approaching the obstacle 
between y and -y  at x = 0, and I,?(y)-I,?(-y) is the transport between y and - y .  
Thus, 1 - T is the fraction of transport passing over the bump, and T is the fraciton of 
transport diverted around the bump. When T > 0 the flow is blocked, and when T < 0 
the transport is enhanced. For quasi-geostrophic theory, which does not allow 
horizontal divergence, none of the fluid is diverted around the obstacle, and T = 0. 
Note that T( co) = 0, and T depends only on I,?,,, the odd portion of the stream function, 
and is therefore independent of E as Bannon (1980) and Johnson (1978) pointed out for 
f-plane flows over radially symmetric topography. The calculation of T does not take 
into account closed streamlines, which would alter our notion of blocking efficiency. 
In our calculations, we ignore this effect by evaluating T at y = 1, the edge of the 
topography. 

The flow exerts a force on the topography, or conversely, the topography exerts a 
force on the flow. The force can be divided into the drag, D, the force in the zonal 
direction, and the lift L, the force in the meridional direction. The forces on the bump 
are given by 

F = PVh dA. 

Here, h is discontinuous, h, = h, 6( 1 - r),  and the pressure is discontinuous. To evaluate 
this integral, we let the topography be an approximation to smooth topography, with 
h, symmetric about r = 1, close to a delta function. As the topography becomes 
steeper, the integral of Ph, over r tends toward h,+[P(r = l+)+P(r  = 1-)]. Thus, 

l 

h,i[P(r = l+)+P(r = l-)]cos@dO 
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L = h, #"r = 1+) + P(r = 1-)] sin 8 do. f 
558 

and 

The pressure can be divided into its odd and even parts P = P, + Po, where 

Po = $0 - V@$e $0 - (€ /ha)  ($er $or + $e, $a), 

Pe = $e - V&($E + $3 - (€/2h2) (Ilrtr + $& + $Eo + $:J* and 

The odd component, Po, is independent of E so that the lift is independent of 8.  The even 
component, Pe, has terms proportional to E and l/e. For westward flow and flow on 
thefplane, the pressure is even about the y-axis, so that the drag is zero. 

2.2. Solutions for westwardflow on the /3-plane 
For westward flow, the introduction of B traps the disturbance near the topography. 
The quasi-geostrophic approximation gives the solution (McCartney 1975) 

The finite-depth solution is 

r sin 8 
and +=- + b, I,(Kr) + b, I,(Kr) sin 6 +I$ for r < 1, 1 -h, 

where 

and 

The coefficients a,, a,, b,, and b, are found using the matching conditions at r = 1. 
When b is large the combined effects of finite topography and ,8 are most striking 

(figure 1). In this limit, streamlines tend to follow lines of constant background 
potential vorticity, so that the relative vorticity in the potential vorticity equation can 
be neglected except in boundary layers at r = 1. The quasi-geostrophic solution is 
approximately 

where x = ( r  - 1) bi is the boundary-layer variable. The finite-depth solution is 

h~ e-6 for r > 1 
2( 1 - h,) ~b 

$ = rsinB+ h~ e-5 sin o + 
2(1 -ho) 

and 

Both boundary-layer solutions are correct to order b-t, while be is order 1 and b % 1. 
The differences between the quasi-geostrophic solutions and the finite-depth solutions 
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FIGURE 1. Stream function for westward flow when b = 10, h, = 0.5, and 6 = 0.1. In this and in all 
subsequent contour plots, the contour interval is 0.4, and the topography is represented by the circle 
(dashed) with radius 1 .  (a) Finite-depth solution, and (b) quasi-geostrophic solution. 
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can be seen by considering a fluid parcel which originates upstream at y = ye  and has 
potential vorticityf,+/3y. If we move this parcel over the topography to yi conserving 
of potential vorticity (neglecting relative vorticity) we have 

so that 

Since ye  > 0, fluid parcels always move to the south over the topography in this limit. 
The southward movement is larger than would be predicted from quasi-geostrophic 
theory which yields yi = ye-& h0//3H. 

The circulation, lift, and blocking can be calculated from the boundary-layer 
solution, giving 

Yi = Ye(  1 - ha) - f o  ho/PfJ. 

for the finite-depth solution. There is enhanced flow over the topography relative to the 
background flow so that T is negative. The quasi-geostrophic solution gives L = xho, 

= - 7cho/sbi, and T = 0, the small-h, limits of the finite-depth results. 
The variation of the solutions with the various parameters in the problem can be 

understood by considering the global quantities that can be calculated from ?,h. The 
f-plane limit of the circulation is nho/E and is the upper limit of the circulation on the 
/I-plane. This is because the /3-effect works to compensate the vortex squashing 
generated over the topography. The magnitude of the quasi-geostrophic circulation is 
always smaller than the finite-depth circulation (figure 2a). The lift in the finite-depth 
solution is larger than that found from the quasi-geostrophic solution and the f-plane 
solution (figure 2b). The effect of /3 is to keep the streamlines more nearly aligned with 
the lines of constant cf, + /3y)/h, allowing the odd portion of the stream function, $,,, 
to dominate as b is increased. The quadratic terms in the pressure also contribute to 
the lift in the finite-depth calculation, rectifying the even part of $, and contributing 
to the force on the topography. For small b, the blocking efficiency is larger in the 
finite-depth model than the quasi-geostrophic model because flow is diverted around 
the topography and this effect is enhanced as h, increases (figure 2c). The blocking 
efficiency is smaller on the P-plane than on the f-plane because the planetary vorticity 
can compensate the stretching vorticity, allowing fluid parcels to go over the 
topography more easily. When b becomes larger, the blocking efficiency becomes 
negative as was demonstrated in the boundary-layer solution. 

Johnson (1978) showed that closed streamlines occur less easily for the finite-depth 
model than for the quasi-geostrophic solution on thef-plane. This is also true on the 
P-plane. For the quasi-geostrophic model, the critical height for closed streamlines to 
occur is given by 

which is found by setting +, to zero, at 0 = in, r = 1. Likewise, in the finite-depth 
model, the requirement is 

1 
1-ho + b, K I h ( K )  + b, K I i ( K )  = 0, 
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FIGURE 2. Global quantities calculated from the solution for westward flow. Quantities are shown for 
h, = 0.2 (long dash line), 0.4 (short dash line), 0.6 (dot-dash line), 0.8 (dash dot-dot-dot line), and the 
quasi-geostrophic solution (solid line). (a) The circulation r in units of hole. The circulation is always 
negative (anticyclonic). (b) Lift L in units of h,. The quasi-geostrophic lift is nh,. (c) Blocking 
efficiency T. Blocking efficiency for the quasi-geostrophic solution is 0. 

where b, is proportional to 1/e and both b, and b, are functions of b and h,. Note that 
h, appears implicitly in K. The critical Rossby number above which no closed 
streamlines exist is found by solving for e in (10) and (11) and letting h, go to 1 as the 
upper limit on the height of the topography. Above this point, the critical height is 
greater than 1, which is unphysical. Doing this gives 

for the quasi-geostrophic solution and 

for the finite depth solution, where we have substituted in the forms of b, and b,. The 
f-plane limit of can be found by letting b go to zero. For both solutions, the critical 
Rossby number is a monotonically decreasing function of b that approaches zero as 
b + co ; in this limit, the &effect inhibits northsouth movement of streamlines. The 
maximum Rossby number is always larger for the quasi-geostrophic model, indicating 
that it is harder to form closed streamlines in the finite-depth model. 
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2.3. Solutions for  eastwardflow on the P-plane 
For eastward flow lee Rossby waves are formed downstream of the topography. 
McCartney (1 975) found the quasi-geostrophic solution applying the boundary 
condition (7) : 

$ = 2hO rsin0+7Jl(b~)S(bir,0)--{-nS(b~r,0)Jl(b~) ho 1 Y,(bh)) for r > 1 cbs ,& 
2h and $ = 

where 

For the finite-depth problem, the matching conditions require that the solution 
contain odd (sine) wave modes in addition to the even (cosine) wave modes. We use 
the approach that Miles & Huppert (1968) developed to find the solution in an 
analogous system of flow in a stratified fluid over a semi-circular obstacle. They 
constructed lee wave functions that satisfied the boundary condition individually. They 
required functions that were odd in y, so we extend their work to include the even 
modes. 

The lee wave functions are constructed such that they each satisfy the boundary 
condition asymptotically and are given by 

for the odd functions and 
c(r, 0) = Y,(bir) sin n0 + $x(r, 0) 

e(r, 0) = Yn(bb) cos n0 + &(r, 0) 
for the even functions, where 

00 

&(r, 6) = C Jq(bb) sin q6 
q=1 

and 

The finite-depth solution for r > 1 can be written as a sum over the lee wave 
functions, and by changing the order of summation, 

and 

and 
where 

znq = s,,, Y,(b% + b,, .Jn(b%, X,,, = a,,, Y,,(bir) + dqn J(b:r), ( e/.) k/ (P - k2), k even, I odd 
bkl = (4/7c) Z/(P - k2), k odd, I even 

k - 1 even 
(4/7c) 1/ (P - k2), k even, I odd 
(4/7c) k / (P  - k2), k odd, 1 even 

k - 1 even 
k=O, lodd  
k odd, I = 0. - ( 2 / 4  1 / k ,  
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FIGURE 3. Stream function for eastward flow when b = 10, h, = 0.5 and E = 0.1. 
(a) Finite-depth solution, and (b) quasi-geostrophic solution. 
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Here Sij is the Kronecker delta. For r < 1 the solution is 
co 

F, + ~,(k, r )  [b, sin n0 + d,, cos no]. r sin 0 
$ = 

n=o 1-h, 

Applying the matching conditions gives an infinite set of coupled linear equations. 
They comprise two sets of equations for a, and b, and two sets of equations for 
c, and a,. In order to solve these, n and q are truncated at N,  and then the set of 
equations is solved numerically. We let N =  10, and it can be seen in the solutions 
constructed below that the upstream waves are small, showing that the upstream 
boundary condition is satisfied asymptotically. 

Once again, in the limit of large b, the finite-depth and quasi-geostrophic solutions 
are very different (figure 3). In this case, we cannot construct a simple boundary-layer 
solution as we did for westward flow because large-amplitude lee Rossby waves are 
generated. For the finite-depth model, the stationary Rossby waves generated over the 
topography have very large amplitude as they compensate for the large amount of 
relative vorticity generated. Although these waves may not be stable, and would 
certainly be modified by frictional effects, the solutions show that large-amplitude 
Rossby waves could be generated that are not predicted from the quasi-geostrophic 
solution. 

We proceed to calculate the circulation, lift and blocking as for the westward flow 
solutions. The circulation for the quasi-geostrophic solution is 

r = 2.n(h0/€) .TI@) Y,(bi), 

while the circulation for the finite-depth model is shown graphically (figure 4a). The 
magnitude of the circulation oscillates with a wavenumber of approximately d( 1 - ho), 
the wavenumber of the variations over the topography. The circulation reverses sign 
owing to local reversals of direction in the wave pattern which is illustrated in figure 
3. The blocking efficiency becomes negative for large b as it did for the westward flow 
(figure 4b). This results from the same tendency for the streamlines to follow lines of 
constant planetary vorticity when b is large so that the flow is enhanced over the 
topography. However, this trend does not continue indefinitely, because eventually the 
wave field has large enough amplitude and small enough wavelength to dramatically 
affect the flow immediately over the topography. The lift increases with increasing h,, 
and is greater than that found on thef-plane or for the quasi-geostrophic solution 
(figure 4c). This effect was also seen for westward flow; the odd portion of the wave 
function tends to dominate as b increases since quadratic terms in the pressure rectify 
the lee wave signal in the lift. 

The drag from the quasi-geostrophic solution is given by 

D = 2 x ~ ( h , / e ) ~  ?(b;)/b:. 

The resulting drag has zeros in it, associated with the resonant solutions as discussed 
by McCartney (1975). The envelope of the curve decays with increasing b, decreasing 
algebraically as b-l. As shown by Johnson (1977), the wave drag associated with 
eastward flow over topography depends critically on the form of the topography, and 
the resonant solutions do not appear for flow over smooth topography. However, the 
qualitative comparisons between the finite-depth and quasi-geostrophic theory should 
still be valid for similar solutions of flow over smooth topography. The drag in the 
finite-depth model is composed of two parts, one due to the part of P, proportional to 
1/e and the other to the part proportional to E (figure 5). The first part of the drag has 
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FIGURE 4. Global quantities calculated from the solution for eastward flow. Quantities are shown for 
h, = 0.2 (long dash line), 0.4 (short dash line), 0.6 (dot-dash line), 0.8 (dash dot-dot-dot- line), and 
the quasi-geostrophic solution (solid line). (a) Circulation r in units of hole.  (b)  Blocking efficiency 
T. Blocking efficiency for the quasi-geostrophic solution in 0. (c) Lift L in units of h,. The quasi- 
geostrophic lift is nh,. 

size comparable to the quasi-geostrophic drag, while the other part increases 
dramatically for increasing h,. The second component does not contribute when e += 0, 
but even for relatively small Rossby numbers (for instance e = 0.1) it can be very 
large owing to the large-amplitude Rossby waves generated downstream when both b 
and h, are large (figure 5 c). Thus, the drag calculated from the finite-depth model has 
a very different character than that from the quasi-geostrophic model. The part of the 
pressure that contributes to the drag, P,, has quadratic dependence on the stream 
function so that the large-amplitude downstream wave field contributes a large amount 
to the drag. 

2.4. Discussion 
Quasi-geostrophic theory tends to underestimate the strength of the flow over the 
topography, resulting in an underestimate of the lift and drag and an overestimate of 
the circulation of the flow. In addition, the quasi-geostrophic approximation results in 
a critical Rossby number (above which closed streamlines cannot exist above the 
topography) which is too large. The steady solutions discussed here may not be 
realizable in practice. In the laboratory (Boyer et al. 1984) the flows tend to become 
unsteady when the Rossby number increases. There have been no laboratory 
experiments where the /3-effect is very strong b 9 1 ; however, the large-amplitude lee 
waves generated downstream of the topography when b is large may modify the 
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FIGURE 5. Drag D for eastward flow as a function of b. Shown for h, = 0.2 (long dash line), 0.4 (short 
dash line), 0.6 (dash-dot line), and quasi-geostrophic solution (solid line). (a) The portion 
proportional to l/s in units of h i / € .  (b) The portion proportional to E in units of his ;  h, = 0.6 is not 
shown because it is off the scale of the plot. The quasi-geostrophic contribution is zero. (c )  Drag with 
e = 0.1 in units of h i / € .  

upstream condition such that the mean flow would be modified. In addition, the lee 
waves may become barotropically unstable, making a steady solution unlikely. 

3. The initial value problem on thef-plane 
To investigate time-dependence, we consider the initial value problem of flow 

impinging on finite topography on thef-plane, and for simplicity, we ignore the p- 
effect. The geometry of a right-circular cylinder allows the use of the method of contour 
dynamics. The method is modified to implement the matching conditions on the edge 
of the topography. The validity of the quasi-geostrophic approximation is also 
investigated in this context. 

3.1. The quasi-geostrophic initial value problem 
Koslov (1983) used contour dynamics to study the quasi-geostrophic initial value 
problem, and we begin by reviewing his results. In a barotropic rotating fluid, the 
potential vorticity is advected by the stream function. The evolution of the fluid can be 
described by the potential vorticity equation (2). The stream function can be calculated 
using a Green’s function, 

$(x, y )  = l l q ( c ,  q)  G(x, x’, y, y’) dx’ dy’ + boundary contributions (13) 
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FIGURE 6. Schematic of the different regions of constant relative vorticity. Outside of the contours, 
the vorticity is zero. (a) The stippled region has negative relative vorticity (region A), and (b) the 
stippled region has positive relative vorticity (region B). The arrows indicate direction of integration. 
Areas which are not stippled in either (a) or (b) have zero relative vorticity. For the quasi-geostrophic 
model, the two values of non-zero vorticity exactly cancel, and the integration can instead be done 
over the circle and the deformed contour. For the finite-depth model, the two regions (r < 1 and 
r > 1) must be evaluated separately. 

if the potential vorticity q and the boundary conditions are known. For Laplace’s 
equation in a domain with no boundaries, the Green’s function takes the simple form 

G(x, x’, y ,  y’) = (1 /2n)  In R, (14) 

where R = [(x-x’)’+ (y-y’)’)];. If k is piecewise constant, the relative vorticity is zero 
initially, and q is conserved; then q will be piecewise constant so that it can be taken 
out of the integral. In order to calculate the velocity at any point, we differentiate (13) 
with respect to x and y ,  invoke the symmetry of the Green’s function, and use Green’s 
theorem to obtain 

(u, 8) = (- $, a, $) = 4 G(R) (dx’, df). (15) f , 
The velocity at any point is found by evaluating the contour integral. In order to find 
the evolution of the flow field, the evolution of aD must be known, and it can be found 
by calculating the velocity on aD. 

This method reduces the problem of solving for the nonlinear evolution of the field 
to that of evaluating (15) at each time step. Once the velocity on i3D is known, it can 
be stepped forward in time to find the new location of the contour. The implementation 
of this technique used here is described in Polvani (1988). At each time step, the 
boundary of the region of constant relative vorticity is stepped forward via 
RungeKutta integration. The Green’s function is singular on the contour, but the 
singularity can be handled by using the method in Polvani’s Appendix B. The basic 
contour dynamics computer code was developed by Meacham (1991). As the contour 
deforms with time, the distances between the points on the contour change, and an 
adjustment in the spacing of the points on the contour is made to carry the calculation 
forward in time accurately. The points are redistributed according to the local rate of 
curvature and are added or removed as needed, and when the contour comes back on 
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itself, it is pinched off. Only when many (on the order of 10) pinch-offs have occurred 
is there a significant loss of vorticity (on the order of 1 %) in any of the calculations 
in this study. 

After the background flow has been turned on, there are two regions of non-zero 
vorticity to consider (figure 6). The region of fluid which originated upstream that 
moves over the topography (the stippled region in figure 60, region A) has relative 
vorticity -hole;  the region of fluid which originated over the topography that moves 
off the topography (the stippled region in figure 6 b, region B) has relative vorticity hole. 
In order to find the flow everywhere, a contour integral around region A and B must 
be evaluated. Instead of evaluating the contours that bound the regions A and B 
separately, we evaluate the topographic contour (a circle) using potential vorticity 
- ho/s  and the contour that bounds the fluid that originated over the topography using 
potential vorticity hole and add the results to take advantage of the cancellation in the 
zero-vorticity region. This method can be used for an arbitrarily shaped region and is 
not restricted to a circle. Koslov (1983) considered flow over a circular cylinder, where 
an analytic solution can be found for the topographic contour integral. 

We demonstrate the two dynamical regimes that Huppert & Bryan (1976) first 
observed. When the topography is small (figure 7a) all of the fluid which originates 
over the topography is swept downstream by the background flow and assumes a tear- 
drop shape as it is influenced by the anticyclonic circulation over the topography. 
When the topography is tall some of the fluid that originates over the topography 
remains trapped there (figure 7b). In this example, initially the fluid which originated 
over the topography is pushed downstream. It then moves clockwise around the 
topography in response to the anticyclonic vorticity. The upper part of the contour is 
advected over the top of the bump, while the lower part is stretched downstream, 
giving the C-shape. Finally, the upper part of the C is advected to the south and 
clockwise around the topography while the lower part of the C is shed downstream. 
Eventually the calculation must be stopped because the contours become too broken 
up. To supplement Kozlov (1983), we show the velocity field so that dipole structure 
of the flow is easily seen (figure 8). The subsequent advection of the blob of fluid which 
originated over the topography can be observed, as well as the cyclonic vortex which 
is shed downstream. 

Verron & Le Provost (1985) noticed that when the fluid has been moved to the base 
of the topography (for instance see t = 1 in figure 7 b )  it appears to be in a state similar 
to the steady-state solution found by Johnson (1978) using variational techniques. 
However, the flow progressively alters after this point. In the quasi-geostrophic 
solutions that Johnson presented, the contour of positive potential vorticity does not 
overlap the topography, unlike the example shown here, although the parameter value 
used here lies in the regions where Johnson (1978) found steady solutions (in Johnson’s 
notation, a = 0.2 for the example in figure 7b).  We observe progressive ejection of 
filaments from the patch of fluid that originated over the topography as the fluid is 
advected clockwise around the topography. A linear wave oscillates around the 
topography in a period t = 47cs/hO, 2.5 for the example shown (Johnson 1984). The 
period of rotation in our simulation is approximately 4. The discrepancy between 
the numerical model and linear theory is due to the ejection of vorticity away from 
the topography. In the results of Verron & Le Provost (1985) and James (1980), 
ejected fluid is often entrained back into the trapped fluid. This process is enhanced 
by the presence of friction. 

It is plausible that the system reaches a quasi-steady state with a finite amount of 
fluid trapped over the topography for a timescale long compared to an advection 
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FIGURE 7. Time evolution of the contour that delineates fluid which originated over the topography 
after the background flow has been turned on abruptly at t = 0. A snapshot of the contours is taken 
at t = 0, 1, ..., 9 with time increasing to the right and downward. The dashed contour is the boundary 
of the topography; the solid contour delineates the boundary of the fluid that originated over the 
topography. (a) hO/e = 1, and (b) hole = 5. 

timescale yet short compared to the spindown time of the fluid. Vorticity ejection and 
entrainment is probably an important mechanism in the path to the steady state. 
Unfortunately, the numerics become invalid before a steady-state solution is reached. 
However, we can explore the approach to different possible steady-state solutions. 

19 FLM 250 
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FIGURE 8 (a, b). For caption see facing page. 
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FIGURE 9. Time evolution of the contour for a case when the background flow is turned on 
slowly with timescale T = 4 and h0/e  = 5 .  A snapshot of the contours is taken at t = 0,1,. . ., 8. 

First, we explore if time-dependence in the background flow can change the final state 
of the system. We choose 

U = U, tanh ( f / ~ )  

as Huppert & Bryan (1976) did. When the background flow is turned on more slowly 
than in figure 7(b) ,  more fluid remains trapped on the topography (figure 9). This 
suggests that the steady-state solution of the system would be different when the 
background flow is turned on slowly than when it is turned on abruptly. Johnson 
(1984) constructed steady solutions such that the maximum amount of fluid possible 
is retained over the topography. From the results of varying 7, it seems plausible that 
this solution would be reached were the background flow to be turned on very slowly. 

Another possible steady solution, an intermediate retention solution where an 
intermediate amount of fluid is retained over the topography, provides an infinite set 
of steady solutions to the inviscid problem. In these solutions, the trapped fluid is 
contained within a circular contour with centre x = 0, y = 2e/h ,  and radius ro that has 
magnitude anywhere from zero up to Ingersoll’s (1969) solution radius of ro = Y, = 
1 - 2 ~ / h , .  The difference between these solutions and Ingersoll’s (1969) solutions is that 
there are closed streamlines located outside the circle of radius ro and these closed 
streamlines trap fluid that originated upstream, but the fluid within the closed 
streamlines is not spun down through the effects of bottom drag. The family of 
solutions are given by 

r > l  +.=- 

where K = nho Y ~ / E  and r’ is the radius referenced to x = 0, y = - 2s/h,. The fluid is 
stagnant within the circle of radius r,. We numerically tested the stability of this 
solution to small perturbations and it is stable. 

Three possible steady solutions are shown for the parameters used in figure 7 b : the 
inertial solution; the intermediate retention solution; and the maximum retention 
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solution (figure lo). In the inertial solution, all of the fluid which originated over the 
topography is swept downstream. The intermediate retention solution is constructed 
such that the amount of fluid trapped over the topography is the same as found in the 
example shown in figure 7(b )  in the last time step. This solution resembles the initial 
value problem results best. The physical reason why different steady states are possible 
can be understood by considering how the initial value problem progresses. When the 
background flow is turned on very slowly, one can think of the process as a succession 
of steady states. The initial steady state is one where there is no flow, and all of the fluid 
is trapped over the topography. As the background flow increases, the maximum 
retention solution holds at each instant, so that the final steady state is the maximum 
retention solution. When the background flow is turned on abruptly however, the fluid 
moves off the topography before it has time to respond to the anticyclonic flow, loosing 
some of the fluid necessary to form the maximum retention solution. 

3.2.  The finite-depth initial value problem 
For the finite-depth initial value problem, a modified contour dynamics method is 
used to find the time-dependent behaviour of the system. Since the transport normal 
to the boundary and the tangential velocity along the topography are both continuous, 
the Green’s function is more complicated than (14) and was given by Johnson (1978). 
Given the Green’s function, the velocity field could be found everywhere. Un- 
fortunately, it lacks the appropriate symmetry needed to apply contour dynamics, and 
the velocity cannot be determined by evaluating contour integrals. The area integrals 
can only be transformed into contour integrals as long as the Green’s function is 
composed of a linear combination of functions g,, with 

for each g,.  The same condition must hold for the y and y’ derivatives. For Johnson’s 
Green’s function, these symmetry conditions do not hold, and the problem is solved by 
applying the matching conditions explicitly at each time step. 

Before the background flow has been turned on, the upstream fluid has potential 
vorticity q = 1 while the potential vorticity of the fluid over the topography has value 
q = 1/(1 - A o ) .  When the background flow is turned on, the fluid over the topography 
is pushed off and stretched, gaining cyclonic relative vorticity 

while the fluid that has been brought from upstream over the topography now has 
anticyclonic relative vorticity 

In the quasi-geostrophic limit, h0+ 0 but ho/e finite, we find that (16) and (17) have the 
same magnitude. 

The problem is solved at each time step by considering the region r > 1 separately 
from the region r < 1. The velocity field is found for r > 1 by assuming that the only 
sources of vorticity in the problem are those located at r > 1 (i.e. the stippled region 
in figure 6b). Likewise, the velocity field for r > 1 is found using only those sources 
located at r < 1 (i.e. the stippled region in figure 6b) .  The logarithmic barotropic 
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FIGURE 10(a,b). For caption see facing page. 
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FIGURE 10. Streamlines for steady inviscid flow over topography when h,/s = 5.  (a) The inertial 
solution (b) the intermediate retention solution with ro = 0.4 and (c) Ingersoll’s (1969) solution. 

Green’s function is used in each case. In order match the two regions together, a 
homogeneous (zero vorticity) solution is constructed. To do this, the velocity at r = 1 
is calculated at 2m = N points evenly spaced in O from the two cases discussed above 
(i.e. at r = 1+ and r = 1-). 

These velocities are transformed to polar coordinates via 

i =  icosO+jsinO, 6 = -isino+jcosO, 

and E =  icosO-isinO, j =  isinO+icose 

since the matching conditions are applied to the radial and azimuthal velocities. A fast 
Fourier transform is performed on the polar velocities at r = 1 to decompose them into 
modes in 8 such that 

N i z  1) -in8 U ( I =  1-,6) = C UC e 
n--N/a 

N’2 (i) -in@ and v(r = l - ,O)  = C v ,  e , 

where u is now the radial velocity and v the azimuthal velocity. Likewise, similar 
equations can be written with superscripts o instead of i for the velocity at r = I+. 

To match the two regions together, a homogeneous series solution to Laplace’s 
equation is added. The homogeneous (zero vorticity) solution can be written 

n - - N / 2  

-00 
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and 

The contribution to the velocity from the homogeneous solutions is found by taking 
the appropriate derivatives in r and 8. 

The matching conditions then reduce to 

ina, + (1 - h,) u:) = inb, + u t )  (20) 

for the transport normal to the edge of the topography to be continuous, and 

for the tangential velocity to be continuous. From (20) and (21), the coefficients a, 
and b, in (18) and (19) can be calculated. For a real solution a, = a!, and b, = bT,. 

To find the velocity field, the contour integral is calculated for either region A or B 
and the series solution is found for the location in question. Typically 16 modes are 
used in the decomposition. Mass is conserved, as long as the contours are not too 
broken up, so that the method of applying the matching conditions does not affect the 
accuracy of the solution. Note that vorticity and mass conservation no longer implies 
area conservation; rather the depth-weighted area is conserved. 

The contour integrals themselves are more difficult to evaluate than those in the 
quasi-geostrophic problem where the cancellation in the zero-vorticity region can be 
taken advantage of. The algorithm used to calculate each line integral consists of several 
steps. First, the intersection points of the contour with the edge of the topography (the 
circle of radius 1) are found. Whether the contour is entering or exciting the circle, in 
the sense of the direction of the integration, is recorded as a vector. Then the 
intersection points and flags are ordered in 8. For the part of the integral on the 
movable contour, the integration is done until the contour crosses the circle. A point 
is then interpolated onto the circle using the two points on the movable contour on 
either side of the circle. The integrals around the arc of the circle are then performed 
to complete the path, with the flag determining which arcs of the circle belong to the 
contour integral. 

There is an additional limit in the numerical accuracy of the model introduced by the 
matching conditions. Consider two points on the contour that straddle an intersection 
of the contour and the edge of the topography (the circle with radius 1). The point just 
inside the topography has velocity U while the point just outside the velocity has 
velocity U( 1 - h,) due to the conservation of radial transport. Thus, over the next time 
step, the point over the topography is moved a distance UAt while the point not over 
the topography is moved UAt(1 -h,), The point originally over the topography can 
overtake the point not over the topography. This error can create kinks in the contour. 
The errors associated with this are of the size of the time step At, while the error in the 
time-stepping scheme is order At', so the results are less accurate because of this. In 
order to improve the numerical stability of the method, one must reduce the time step. 
This was done for a case which was initially numerically unstable so that the vorticity 
was not conserved. When the time step was reduced, the solution became numericaliy 
stable and the total amount of vorticity was conserved. 

We let hole be the same as in the quasi-geostrophic runs, but change the value of h,. 
When the height of the bump is one quarter of the water depth (with a Rossby number 
of 0.05, figure 11 a), the system initially evolves more rapidly as the flow is enhanced 
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FIGURE 11. Time evolution of the contour for the finite-depth model when hole = 5 for 
t = 0, 1, ..., 8. (a) h, = 0.25, and (b) h, = 0.5. 

over the topography relative to the quasi-geostrophic solution (figure 7b).  Later the 
shed fluid remains closer to the topography and is ejected more to the base of the 
topography, but eventually escapes downstream as in the quasi-geostrophic case 
before. 

When the topography takes up most of the water column (h = 0.75 and Rossby 
number of 0.15) all of the fluid remains trapped near the topography as it rotates 
around it in what appears to be a stable oscillation (figure 12). The period of the 
oscillation is close to two advection times. It is clear here that the area of the contour 
is not conserved, but the mass is, as the fluid parcels move from shallower to deeper 
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FIGURE 12. Time evolution of the contour for the finite-depth model when h, = 0.75 and h,/s = 5 
as in figure 7(b) for t = 0, 0.5, 1, 1.5, ..., 7.5. 

regions. The oscillation can be understood as a dipole rotating around in a clockwise 
direction. This is easier to see in the velocity field (figure 13). In fact, if the background 
flow is turned off after the motion has been initiated (at t = 2.5) we find that the 
oscillation persists, travelling symmetrically around the topography. Oscillations of 
this sort have been noticed before in time-dependent calculations. Verron & Le Provost 
(1985) note that in the initial stages of the initial value problem, the fluid seems to be 
in an oscillatory pattern. James (1980) also noticed this, and in his calculation the 
oscillation persists for at least four cycles. The oscillation can also be thought of as a 
nonlinear extension of a seamount trapped wave (Rhines 1969). In the case described 
here, fluid parcels move on and off the seamount by an order-one amount. 

The relationship between the solution of flow over tall topography and flow around 
an obstacle that reaches to the surface should be mentioned. To solve this problem, the 
circulation around the island must be specified, and it is normally taken to be zero by 
the following argument: if the flow starts from rest, and circulation is never 
introduced into the system, then circulation will never develop. This choice is not the 
limit of the inertial solution as the topography gets large (i.e. the examples shown in 
92), because in that solution vorticity is always produced over the topography. 
However, the oscillatory solution described above nearly reaches the limit of the island 
solution as the topography becomes large. This is because none of the fluid escapes 
downstream, and therefore, vorticity is never produced over the topography. This can 
be seen in figure 13 in that the flow is nearly symmetric about the x-axis for r > 1 
throughout the entire oscillation since the net vorticity produced over the topography 
is very small. 

When the Rossby number is increased further ( E  = 0.25, h, = 0.75, figure 14), the 
system seems to approach a steady-state solution, or at least an oscillation with a very 
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long period. The evolution is similar to that in figure 12, except that the fluid moves 
completely off the topography while remaining in its vicinity. This value of E coincides 
with the critical Rossby number above which closed streamlines never occur in the 
inertial model discussed in 92. This solution is probably related to the steady solutions 
that Johnson (1978) discussed: indeed, the final pictures look quite similar to his 
(allowing for the fact that they are not quasi-geostrophic). Furthermore, the evolution 
has slowed down considerably, suggesting that it is quite closed to a steady equilibrium. 
Neither solutions of this type, nor the oscillatory solutions, were found in the quasi- 
geostrophic initial value problem. This appears to be because the acceleration of the 
flow over the topography in the finite-depth model allows the fluid to be swept off the 
topography before it has a chance to be deformed by the induced anticyclonic 
circulation, while there is no acceleration of the background flow in the quasi- 
geostrophic model. 

3.3. Discussion 
To understand further when different steady or periodic solutions are reached, a 
regime diagram can be constructed (figure 15), dividing (hole,  €)-space into three 
regions. When hole > I / E  the solution is not physically realizable because the 
topography is larger than the depth of the fluid. In the first region, some of the fluid 
remains trapped over the topography while some is lost downstream. The appropriate 
steady-state solution to qualitatively describe these solutions would probably be 
intermediate retention solutions. In the second region, all of the fluid which originates 
over the topography escapes downstream. In this case, the inertial solution describes 
the steady solution near the topography. Finally, in the third region, all of the fluid 
remains trapped near the topography, either in a periodic oscillation, or in a steady 
solution similar to the one that Johnson (1978) discussed. None of the quasi- 
geostrophic solutions ( E  = 0) fall in this region. The distinction between these two 
possible solutions is not clear, as it appears that the steady solution arises as a long- 
period limit of the stable oscillation. The nature of the diagram could certainly change 
if the background flow were turned on slowly instead of abruptly, since we showed 
that, at least for the quasi-geostrophic model, the quantitative solution alters. 
However, one would guess that the three separate regimes would still appear. 

4. Conclusions 
We have studied flow over finite topography and made comparisons of the solutions 

to quasi-geostrophic solutions. First, we considered how finite topography affects the 
flow when the topography has large scale and the /I-effect is important. Then, we 
considered the initial value problem on thef-plane. In both cases, we found that the 
finite-depth model produced qualitatively different results than those using a quasi- 
geostrophic formalism. The extensive comparisons were possible because the 
topography was idealized as a right circular cylinder. In the steady solutions, analytic 
solutions are possible, and for the time-dependent solution, the efficient method of 
contour dynamics was used. 

The steady solutions can be divided into three parts: the background flow; a 
component odd in y which is forced by the potential vorticity over the topography; and 
a component even in y which is forced by the matching conditions on the edge of the 
topography. In the quasi-geostrophic solutions, the third component does not appear, 
and, when the topography reaches the surface, the second component is not present. 
When b is large, we find new effects that are not present in either thef:plane solutions 
or in the quasi-geostrophic solution. In this limit, the transport is increased over the 
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FIGURE 13(a,b). For caption see facing page. 
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FIGURE 14. Time evolution of the contour for the finite depth model when h, = 0.75 and h,/E = 3 

as in figure 7(b) for t = 0, 1, ..., 13. 

6 

FIGURE 15. Regime diagram for the initial value problem. Above the solid line h, > 1, which is not 
allowed; ’ + ’ indicates that all of the fluid that originated over the topography is trapped there; ‘ x ’ 
indicates that some of the fluid remains trapped, while the rest escapes downstream; and ‘ 0’ 
indicates that all of the fluids escapes downstream. The quasi-geostrophic runs appear on the y-axis 
( E  = 0). Above hole = 2 there are closed streamlines in the quasi-geostrophic inertial solution, and for 
E > 0.25 no closed streamlines exist in the finite-depth inertial solution discussed in 52.2. 
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topography relative to the background flow for both eastward and westward flow in 
this regime, a reflection of the tendency for streamlines to follow lines of constant 
background potential vorticity when the p-effect is large. For eastward flow, the drag 
can be an order of magnitude larger than that predicted in quasi-geostrophic theory 
due to the quadratic dependence of the pressure on the velocity found through the 
conservation of the Bernoulli function. 

We examine the initial value problem in thef-plane. We again find new solutions that 
do not appear in quasi-geostrophic simulations. First we examine flow over quasi- 
geostrophic topography and show that the time-dependence of the background flow is 
an important factor in determining how much of the fluid that originated over the 
topography remains in the initial value problem. We suggest that Johnson’s (1983) 
maximum retention solution can be realized when the flow is turned on smoothly over 
a long period of time. We construct a family of steady solutions in which only part of 
the fluid that originated over the topography remains there, and we suggest that one 
of these solutions is obtained as a quasi-steady state in the initial value problem. 

We then consider the initial value problem in the finite-depth model. A new method 
is developed to apply boundary conditions at circular boundaries, extending the range 
of problems that can be considered with the method of contour dynamics. We solve the 
problem separately in two regions, over the topography and away from the 
topography, using traditional contour dynamics, and then construct zero potential 
vorticity solutions to match the two regions. This method has more general applications 
than those explored here (Thompson 1990). A new flow configuration is found in which 
the fluid which originates over the topography rotates around it in a stable periodic 
oscillation. Thus, even when the steady inertial solution has no closed streamlines, fluid 
can be trapped near the topography. When the Rossby number is large, the period of 
oscillation can become large, and the solution seems to approach the steady solution 
described by Johnson (1978). A regime diagram is constructed, and it is seen that the 
quasi-geostrophic system does not exhibit the periodic oscillation for this initial value 
problem. 

The combination of the ,&effect and time-dependence have been considered by 
Verron & Le Prost (1985), but it would be fruitful to include finite topography also so 
that all three effects could be considered simultaneously. More realistic geometry 
would also be desirable, though, of course, the simplified geometry allows a more 
thorough exploration of parameter space than would otherwise have been possible. 

This research was supported by the Office of Naval Research Program NOOO14-90- 
5-1839 and was done while L.T. was a student in the MIT-WHO1 Joint Program in 
Oceanography. Additional work was done by L. T. under the College of Oceanography 
and Fisheries Sciences fellowship at the University of Washington. We thank Steve 
Meacham for sharing his contour dynamics programs with us. 

Appendix 
We expect that the shallow-water model will be valid as long as the aspect ratio of 

the fluid is small. Therefore, when the topography is steep, its validity is questionable. 
To examine the range of validity, we consider rotating barotropic flow onto a shelf with 
depth h(x). The flow is assumed to be independent of y except for a uniform northward 
pressure gradient. Under the shallow water approximation, the momentum equations 
are 

uu, - fv = - P,, 
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and 
and the continuity equation is 

Upstream of the shelf, fu ,  = - P,. The potential vorticity equation is then 
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uv,+ fu = - Py, 

(hu), = 0. 

(v, + f ) l h  = f / h , ,  

u = houo/h ,  

where h, is the depth of the fluid far upstream of the shelf. Then 

and (h - h,) dx. 

Thus, under the shallow-water approximation, the meridional velocity u is continuous 
across the shelf, no matter how steep the topography is. Note that the flow is not 
geostrophically balanced to the east, which can be seen by applying the solution given 
above to the meridional momentum balance. 

To see when the shallow-water solution breaks down we consider the same problem 
using the full momentum equations. We can define a stream function such that 
u = -+, and w = +, so that the momentum equations become 

J(+, 4 - f V  = -Pz, JW, v+fx) =furl, J(+,@) = -Pz, (A 1) 
where the Jacobean is 

Once again the solution is independent of y except for the uniform northward pressure 
gradient. A horizontal vorticity equation can be formed 

$, alaz - $z a/ax. 

J($, Vz$) +fv, = 0. 

$=O, z = o ,  

(A 2) 
The problem in (A 1) and (A 2) can be solved subject to the boundary conditions 

$ = U g h o ,  Z = - h ,  
h - th , ,  x+--co, 

++-u , z ,  x+--CO. 

The problem (A 1)-(A 2) is nonlinear and not easily solved, but we can examine the 
form which leads to the shallow-water solution in order to determine what the errors 
are. Under the shallow-water approximation, 

+=- uo(h0lh) z. 

Putting this solution into the northward momentum equation (A 1) gives 

Note that the first term here, balanced with the right-hand side, gives the shallow-water 
potential vorticity expression. The second term should be small if v, is small. It can be 
estimated using the vorticity equation (A 2) 
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I f  the lengthscale of the topography is L the scale estimate of the vertical shear is then 

v, M u: ha/fL3, 

and the ratio of the second term in (A 3) to the first (on the right-hand side) is 

suggesting the limits of validity of the shallow-water model. 

across the topography is 
Given small aspect ratio, so that the shallow-water model is valid, the change in v 

v(L)  - v(0) = f --.-!! z fL J;"f 
so that for the shallow-water solution to be valid, L must be small compared to the 
radius of the bump, but large compared to 

When these requirements hold, the shallow-water approximation can be applied and 
the correct matching conditions on the boundary of the topography are those used in 
this paper. 
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